Parametric Curves

Liming Pang

We have seen that one way to represent a curve on a plane is by writing
down an equation that tells us the relation between the x and y coordinates
that points on the curve need to satisfy. For example, we can use y = f(x)
to represent the graph of the function f, and 2% + y? = 1 to represent the
unit circle.

At the same time, we can view a given curve as the trajectory of a moving
particle. If a particle moves on the plane, then its location (z,y) is a function
of time t, i.e., z = z(t) and y = y(t). We can thus represent the trajectory
of the particle by (z,y) = (x(t),y(t)). A curve given in this way is called a
parametric curve. In many circumstances, the variable ¢ is taken within
some closed interval [a,b]. In such cases, we say the initial point of the
curve is (z(a),y(a)) and the terminal point of the curve is (x(b), y(b)).

Example 1. If y = f(z) is a function, then its graph can be parameterised

by (t, f(t)).

Example 2. The parametric curve (cost,sint), t € [0,2x] describes the u-
nit circle with both initial and terminal points at (1,0). The curve starts at
(1,0), goes in counterclockwise direction and returns to (1,0).

The parametric curve (cost,sint), t € [0,7| describes the upper half of
the unit circle, starting from (1,0) and ending at (—1,0).

The parametric curve (cost,sint), t € [0,4n] also describes the unit circle
as a curve, but this time it goes around the unit circle two times. So this one
1s regarded as a different parametric curve compared with the previous one.

The parametric curve (cos(—t),sin(—t)), t € [0, 27] also describes the unit
circle as a curve, but this time it goes clockwise. So this one is also regarded
as a different parametric curve compared with the previous ones.



Example 3. The ellipse 2—5 + Z—j =1 1s the trace of the parametric curve

(acost,bsint),0 <t < 2w
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Example 4. The cycloid is the trace of a point on a circle as the circle rolls
along a straight line. Find parametric equations for the cycloid if the circle
has radius v and starts at origin rolling along positive x-axis, and the point
P is at bottom at the beginning.

We can let the circle travels in constant velocity r, so its centre will be
at (rt,r) at time t, and the angle formed between P and the point tangent to
the ground is ’% =t, so the parametric equation of the trace of P 1s:

(rt —rsint,r —rcost) = (r(t —sint), r(1 — cost))

If we understand t as the time in the parametric equation (x(t),y(t))
for the parametric curve, then its velocity at ty, the rate of change of the
displacement at this time, is given by

x(t) — x(to) y(t) — y(to)

lim ,
t— 1,

t—to t—to

) = (2'(to), ¥ (t0))
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The vector (z'(to),y'(to)) is called the tangent vector of the parametric
curve (z(t),y(t)) at t = to.

Example 5. Consider the parametric curve (cost,sint), t € [0,2x]. Find
the tangent vector of the curve at the point (—1,0).

The point (—1,0) corresponds to t = w. The tangent vector at this point
18

((cost)', (sint)) = (—sinm,cosm) = (0,—1)

t=m

= (—sint, cost)

t=m
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Proposition 6. If (z(t),y(t)) is a parametric curve, and z'(to) # 0, then

the slope of the curve at (z(to),y(to)) is z,gg;

ay
Proof. By the Chain Rule, & = &4 o 4 — é:i{e
dy :
The slope is 4 = Zj% = Z,Etg so at to the slope is %ﬁg O

Example 7. Find the line tangent to the curve x = y* at (1,1).
The curve can be parameterised as (t%,t). The point (1,1) corresponds to
t = 1. The tangent vector att =1 1s
(®@)y,t) =(@t1)

t=1

= (2’ 1)

t=1

This implies the tangent line of the curve passing through (1,1) is parallel to
the vector (2,1), which means the slope of the tangent line is % = 2. So the
equation of the tangent line isy — 1 =2(x — 1).
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We can also compute higher order derivatives:

2o d d doay L(E) LOrOyOew o
Ly _ d dyy aila) _ #%) [ OP _ Y (t) —y'(t)2"(t)
dz?  dx dx ffl—f ‘Zl—f 2/ (t) [2/(¢)]?

Example 8. Consider the circle given by the parametric equation (cost,sint),
0<t<2m.

d*y Y (t)a'(t) —y (t)a"(t)  (sint)’(cost)’ — (sint)'(cost)” 1

dz? [/ ()3 - [(cost)]? ~ st

When 0 <t < m, % < 0, the corresponding curve (upper semicircle) is con-
cave; when m <t < 2m, %’é > 0, the corresponding curve (lower semicircle)
1S CONVEL.

The idea of tangent vector motivates the following method for computing

the arc length of a parametric curve:

Theorem 9. The arc length of the parametric curve (x(t),y(t)), t € [a,b] is
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Example 10. Find the arc length of the parameterised curve (t — sint,1 —
cost) on t € [0, 27]

/OW\/[(t—sint)’]2+[(1—cost)]zdt:/oW\/2(1—cost)dt

2 t 2w t
:/ @/2(2sin2—)dt:/ 2sin—dt =8
0 2 0 2




Another application of tangent vectors is to compute the area bounded
by the parametric curve (z(t),y(t)) and the z-axis for a < ¢t < b when the
curve coincide with the graph of a function y = f(z):

The area is

z(b)

(z) dx:/ y(t) dx(t) :/ y(t)x'(t) dt

z(a)

Example 11. Find the area bounded by the parametric curve
(t —sint, 1 — cost)

and x-axis for 0 <t < 2.

2m 2m
/ (1 —cost)(t —sint) dt = / (1 —cos*t)*dt = 3w
0 0



