
Parametric Curves

Liming Pang

We have seen that one way to represent a curve on a plane is by writing
down an equation that tells us the relation between the x and y coordinates
that points on the curve need to satisfy. For example, we can use y = f(x)
to represent the graph of the function f , and x2 + y2 = 1 to represent the
unit circle.

At the same time, we can view a given curve as the trajectory of a moving
particle. If a particle moves on the plane, then its location (x, y) is a function
of time t, i.e., x = x(t) and y = y(t). We can thus represent the trajectory
of the particle by (x, y) = (x(t), y(t)). A curve given in this way is called a
parametric curve. In many circumstances, the variable t is taken within
some closed interval [a, b]. In such cases, we say the initial point of the
curve is (x(a), y(a)) and the terminal point of the curve is (x(b), y(b)).

Example 1. If y = f(x) is a function, then its graph can be parameterised
by (t, f(t)).

Example 2. The parametric curve (cos t, sin t), t ∈ [0, 2π] describes the u-
nit circle with both initial and terminal points at (1, 0). The curve starts at
(1, 0), goes in counterclockwise direction and returns to (1, 0).

The parametric curve (cos t, sin t), t ∈ [0, π] describes the upper half of
the unit circle, starting from (1, 0) and ending at (−1, 0).

The parametric curve (cos t, sin t), t ∈ [0, 4π] also describes the unit circle
as a curve, but this time it goes around the unit circle two times. So this one
is regarded as a different parametric curve compared with the previous one.

The parametric curve (cos(−t), sin(−t)), t ∈ [0, 2π] also describes the unit
circle as a curve, but this time it goes clockwise. So this one is also regarded
as a different parametric curve compared with the previous ones.
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Example 3. The ellipse x2

a2
+ y2

b2
= 1 is the trace of the parametric curve

(a cos t, b sin t), 0 ≤ t ≤ 2π

Example 4. The cycloid is the trace of a point on a circle as the circle rolls
along a straight line. Find parametric equations for the cycloid if the circle
has radius r and starts at origin rolling along positive x-axis, and the point
P is at bottom at the beginning.

We can let the circle travels in constant velocity r, so its centre will be
at (rt, r) at time t, and the angle formed between P and the point tangent to
the ground is rt

r
= t, so the parametric equation of the trace of P is:

(rt− r sin t, r − r cos t) = (r(t− sin t), r(1− cos t))

If we understand t as the time in the parametric equation (x(t), y(t))
for the parametric curve, then its velocity at t0, the rate of change of the
displacement at this time, is given by

lim
t→t0

(
x(t)− x(t0)

t− t0
,
y(t)− y(t0)

t− t0
) = (x′(t0), y

′(t0))
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The vector (x′(t0), y
′(t0)) is called the tangent vector of the parametric

curve (x(t), y(t)) at t = t0.

Example 5. Consider the parametric curve (cos t, sin t), t ∈ [0, 2π]. Find
the tangent vector of the curve at the point (−1, 0).

The point (−1, 0) corresponds to t = π. The tangent vector at this point
is

((cos t)′, (sin t)′)

∣∣∣∣
t=π

= (− sin t, cos t)

∣∣∣∣
t=π

= (− sin π, cosπ) = (0,−1)

Proposition 6. If (x(t), y(t)) is a parametric curve, and x′(t0) 6= 0, then

the slope of the curve at (x(t0), y(t0)) is y′(t0)
x′(t0)

.

Proof. By the Chain Rule, dy
dt

= dy
dx

dx
dt
, so dy

dx
=

dy
dt
dx
dt

.

The slope is dy
dx

=
dy
dt
dx
dt

= y′(t)
x′(t)

, so at t0 the slope is y′(t0)
x′(t0)

.

Example 7. Find the line tangent to the curve x = y2 at (1, 1).
The curve can be parameterised as (t2, t). The point (1, 1) corresponds to

t = 1. The tangent vector at t = 1 is

((t2)′, t′)

∣∣∣∣
t=1

= (2t, 1)

∣∣∣∣
t=1

= (2, 1)

This implies the tangent line of the curve passing through (1, 1) is parallel to
the vector (2, 1), which means the slope of the tangent line is 2

1
= 2. So the

equation of the tangent line is y − 1 = 2(x− 1).
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We can also compute higher order derivatives:

d2y

dx2
=

d

dx
(
dy

dx
) =

d
dt
( dy
dx
)

dx
dt

=

d
dt
(

dy
dt
dx
dt

)

dx
dt

=

y′′(t)x′(t)−y′(t)x′′(t)
[x′(t)]2

x′(t)
=
y′′(t)x′(t)− y′(t)x′′(t)

[x′(t)]3

Example 8. Consider the circle given by the parametric equation (cos t, sin t),
0 ≤ t ≤ 2π.

d2y

dx2
=
y′′(t)x′(t)− y′(t)x′′(t)

[x′(t)]3
=

(sin t)′′(cos t)′ − (sin t)′(cos t)′′

[(cos t)′]3
= − 1

sin3 t

When 0 < t < π, d2y
dx2

< 0, the corresponding curve (upper semicircle) is con-

cave; when π < t < 2π, d2y
dx2

> 0, the corresponding curve (lower semicircle)
is convex.

The idea of tangent vector motivates the following method for computing
the arc length of a parametric curve:

Theorem 9. The arc length of the parametric curve (x(t), y(t)), t ∈ [a, b] is∫ b

a

√
[x′(t)]2 + [y′(t)]2 dt

Example 10. Find the arc length of the parameterised curve (t − sin t, 1 −
cos t) on t ∈ [0, 2π]

∫ 2π

0

√
[(t− sin t)′]2 + [(1− cos t)]2 dt =

∫ 2π

0

√
2(1− cos t) dt

=

∫ 2π

0

√
2(2 sin2 t

2
) dt =

∫ 2π

0

2 sin
t

2
dt = 8
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Another application of tangent vectors is to compute the area bounded
by the parametric curve (x(t), y(t)) and the x-axis for a ≤ t ≤ b when the
curve coincide with the graph of a function y = f(x):

The area is∫ x(b)

x(a)

f(x) dx =

∫ b

a

y(t) dx(t) =

∫ b

a

y(t)x′(t) dt

Example 11. Find the area bounded by the parametric curve

(t− sin t, 1− cos t)

and x-axis for 0 ≤ t ≤ 2π.∫ 2π

0

(1− cos t)(t− sin t)′ dt =

∫ 2π

0

(1− cos2 t)2 dt = 3π
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